Experience based reading of Pleistocene human footprints in Pech-Merle

Andreas Pastoors a,*, Tilman Lenssen-Erz b, Bernd Breuckmann c, Tsamkxao Ciqae d, Ui Kxunta c, Dirk Rieke-Zapp e, Thui Thao d

a Neanderthal Museum, Talstrasse 300, D-40822 Mettmann, Germany
b African Archaeology, Institute of Prehistoric Archaeology, University of Cologne, Jennerstrasse 8, D-50823 Köln, Germany
c Breuckmann 3D Engineering, Alter Ortsweg 30, D-88709 Meersburg, Germany
d c/o Nyae Nyae Conservancy, Tsumkwe, Namibia
e Aicon 3D Systems GmbH – Scanner Innovation Center, Torenstraße 14, D-88709 Meersburg, Germany

ABSTRACT

Human footprints in the painted cave of Pech-Merle, France, have been investigated by archaeologists since the 1920s with state-of-the-art methods of the given time. Science always provided tool kits to analyse the information about individuals imprinted into the ground. However, the old human method of expert track reading has first been employed on these tracks in 2013 (as in some other caves with preserved human tracks from the Pleistocene). This special knowledge was deployed by three trackers from the Ju/'hoansi-San in Namibia who enriched our knowledge on the tracks in Pech-Merle in two significant ways: five individuals were identified, aged from 9–10 to over 50 years, from both sexes and some footprints were found that hitherto had been overlooked. It turned out that the features crucial for their interpretation are congruent with those of morpho-metric measurements but their experience based interpretation is more fine-grained than an interpretation based on the available statistics alone. Accordingly it seems justified to introduce the two methods as complementary tools for archaeology, i.e. the established morpho-metric approach flanked by morpho-classificatory track reading.

© 2016 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction

Human hand- and footprints are the most personal, non-substance-based traces left by our Pleistocene ancestors. When there is good preservation, such an imprint in a plastic surface ‘freezes’ information about a short period of time in the life of a single person. No other findings in archaeology are so rich in information about a brief individual moment.

Prehistoric foot- and handprints are known from different continents and periods (Lockley et al., 2008; Pasda, 2013). Well known and among the most spectacular are footprints from early hominids in Laetoli and Koobi Fora in East Africa (Leakey and Harris, 1987; Raichlen et al., 2008), the early Pleistocene ones recently discovered at Happisburgh on the English east coast (Ashton et al., 2014) and the late Pleistocene footprints from Willandra, south-eastern Australia (Webb et al., 2006).

Even richer in number and no less fascinating are footprints left by late Pleistocene modern humans in decorated caves in Southwestern France (Vallois, 1931; Pales, 1976; Duday and Garcia, 1985). Pech-Merle, as one of the most spectacular of these decorated caves, contains a small area with Pleistocene human footprints. They were studied repeatedly during the last century, eventually even by three professional trackers from the Ju/'hoansi-San in Namibia who enriched our knowledge on the tracks in Pech-Merle in two significant ways: five individuals were identified, aged from 9–10 to over 50 years, from both sexes and some footprints were found that hitherto had been overlooked. It turned out that the features crucial for their interpretation are congruent with those of morpho-metric measurements but their experience based interpretation is more fine-grained than an interpretation based on the available statistics alone. Accordingly it seems justified to introduce the two methods as complementary tools for archaeology, i.e. the established morpho-metric approach flanked by morpho-classificatory track reading.

© 2016 Elsevier Ltd and INQUA. All rights reserved.

Please cite this article in press as: Pastoors, A., et al., Experience based reading of Pleistocene human footprints in Pech-Merle, Quaternary International (2016), http://dx.doi.org/10.1016/j.quaint.2016.02.056
different authors in order to synthesize a comprehensive result from the apparently separate analytical systems of morpho-metric studies and what we call the morpho-classificatory study (i.e. track reading based on lifelong learning and experiences (Pastoors et al., 2015)).

2. Material

On the long list of Palaeolithic masterpieces of decorated caves in the Midi-Pyrénées region, Pech-Merle is without doubt one of the most exceptional ones (see Fig. 1). The cave is situated at the confluence of the Sagne and Célé rivers at the foot of the Roche-courbe cliffs. It was discovered in 1922 by two young speleologists (A. David and H. Dutertre) accompanied by Reverend Amédée Lemozi from the adjacent community of Cabrerets. Lemozi published the first rock art drawings from Pech-Merle in 1929 (Lemozi, 1929). Since 1974 Michel Lorblanchet has been conducting intensive research in Pech-Merle. The cumulative results of his work were published in 2010 and give profound insight into, among other things, the technical process of producing rock paintings (Lorblanchet, 2010).

The cave is formed by 2 km of galleries on two different levels. The upper one reveals no archaeological findings. By contrast, the huge lower galleries house a rich body of rock art. The main halls are labelled 'l'Ossuaire', 'Salle Préhistorique', 'Galerie des Disques' and 'Galerie de l'Ours'. In the 'Galerie des Disques' Lemozi discovered a small surface of around 9 sqm with some human footprints roughly 100 m from the collapsed late Pleistocene entrance (Lemozi, 1929). Even if the old surface with the footprints has not been affected in modern times, its original state is concealed by a thin layer of calcite that has formed on it in the course of time. Nevertheless enough details of the imprints are still discernible to permit in-depth studies.

In Pech-Merle the prehistoric remains are considered to belong to three phases between 25 and 15 ka based on iconographic arguments. Only the single radiocarbon date of 29,447 ± 633 calBP (24,640 ± 390 BP — Gifa 95357; date calibrated with CalPal 2007; Weninger et al., 2009) obtained from charcoal in the black colour on one of the two famous spotted horses fits in this timeframe. Other existing dates are considered to be contaminated (Lorblanchet, 2010). In consequence, there is no certainty about the precise dating of the human footprints.

3. Methods

Existing documentation of the footprints in Pech-Merle is incomplete and outdated. In order to generate a state-of-the-art record, the entire surface was scanned with a structured light scanner (Aicon smartSCAN®). Considering that the footprints are covered with a thin layer of calcite and dust, the finest details of the footprints are masked. Therefore 1 mm per pixel seemed to be the appropriate resolution to generate a 3D model of the footprints and their surroundings. The advantage of this kind of documentation lies certainly in its relative objectivity; every point of the surface was recorded with the same intensity and metric precision. This allows comparative assessment of the existing documents and interpretations from morpho-metric as well as morpho-classificatory analyses (Pastoors et al., 2015).

In 2013 three professional trackers from the Ju/'hoansi-San from Tsumkwe (Namibia), Ciqae, Kxunta and Thao, inspected the original footprints in Pech-Merle and three other French decorated caves (Pastoors et al., 2015). Thus indigenous knowledge was a methodologically integrated part of archaeological data-gathering without the detour of ethnographic analogy or as mere validation of previously acquired results (Webb et al., 2006; Webb, 2007).

Integrating indigenous knowledge (IK) of tracking into the research procedure is not a matter of romanticism and it is not aimed at getting an exotic view on tracks from another world-view. Rather we seek alternative interpretation of data on the same empirical base that is available to everyone (Liebenberg, 1990; Lockley, 1999) (see Table 1). Indigenous knowledge of tracks is not based in different rationality, logic or causalities as may be the case with Traditional Ecological Knowledge (TEK) at least in part (Berkes, 2008, p. 8). Expert tracking, for hunting purposes in particular, aims to produce a narrative of a real incident that is irrevocably past on the basis of in-depth knowledge of the entire ecosystem acquired through thorough experience (Liebenberg, 1990). Tracking knowledge of hunter—gatherers has wide overlaps with the knowledge of western-trained zoologists or trophy hunters (Burton Jones and Konner, 1976). The capabilities of hunter—gatherers in reading tracks are legendary throughout various types of literature (e.g. Marshall Thomas, 1988; Liebenberg, 1990; Biesele and Barclay, 2001); and were verified under western scientific test conditions (Stander et al., 1997; Wong et al., 2011). But despite the presence of prehistoric tracks on all continents

![Fig. 1. Pech-Merle: topographical map of the cave with indication of the main localities — Photos Heinrich Wendel (The Wendel Collection, Neanderthal Museum).](image-url)
(Lockley et al., 2008; Pasda, 2013) only very little, rather anecdotal use has been made of it in archaeological contexts (Webb et al., 2006; Franklin and Habgood, 2009).

The interpretations of Ciqae, Kxunta and Thao consist of a broad spectrum of details which cover different features: sex, age, foot position, gait, body posture, and pace. All are embraced by the in-
For the age estimation all features listed under sex determination are relevant, too. Furthermore the flexibility of the toes (young > old) and the presence of cracks in the skin (young < old) are taken into account in tracking.

Ciqae, Kxunta and Thao differentiate among five foot postures: parallel (lo), light outward twist (/\xslash/xa/\xslash/), developed outward twist (\x2621\x2621), light inward twist (gaba), and developed inward twist (tongwi).

During the track-reading process all features undergo a holistic assessment and are reviewed against the contextual information. When a tracker gives an interpretation of a spoor there are several assessment and are reviewed against the contextual information.

When a tracker gives an interpretation of a spoor there are several assessment and are reviewed against the contextual information.

When a tracker gives an interpretation of a spoor there are several assessment and are reviewed against the contextual information.

During the track-reading process all features undergo a holistic assessment and are reviewed against the contextual information. When a tracker gives an interpretation of a spoor there are several assessment and are reviewed against the contextual information.

4. Results

The number of human footprints identified by previous researchers in Pech-Merle ranges from only four (Vallois, 1931) up to twelve (Duday and García, 1983). By discovering five hitherto unknown footprints Ciqae, Kxunta and Thao increased the number to 17, without being able to interpret all footprints (see Fig. 3). Unclear ones were not commented upon because in Ju/hoan language the subjunctive does not exist, and precision in the determination of spoor is essential for hunter–gatherers. Consequentially such imprints were not integrated into the process of reading and interpretation.

In the Pech-Merle footprints the trackers saw five subjects walking barefoot. These are concentrated on the western part of the preserved area in the ‘Galerie des Disques’ (see Fig. 4 and Table 2).

Table 2: Comparison of different interpretations available for Pech-Merle footprints: (*) refers to Ciqae, Kxunta and Thao (Pastoors et al., 2015) and (**) refers to Duday and García (Duday and García, 1983), (***) Added with the age estimation according to Anderson et al. (1956) and based on the measurements from Duday and García (1983).)

<table>
<thead>
<tr>
<th>Footprint*</th>
<th>Side</th>
<th>Direction</th>
<th>Age</th>
<th>Age-group</th>
<th>Sex</th>
<th>Footprint**</th>
<th>Lmax** (mm)</th>
<th>Body size** (m)</th>
<th>Age***</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>right</td>
<td>Galerie Préhistorique</td>
<td>34–35</td>
<td>adultus</td>
<td>male</td>
<td>9</td>
<td>–</td>
<td>–</td>
<td>7–9 boy/girl</td>
</tr>
<tr>
<td>2.1</td>
<td>left</td>
<td>Galerie Préhistorique</td>
<td>25</td>
<td>adultus</td>
<td>female</td>
<td>4</td>
<td>199</td>
<td>1.3</td>
<td>–</td>
</tr>
<tr>
<td>2.2</td>
<td>left</td>
<td>Galerie Préhistorique</td>
<td>9–10</td>
<td>infans II</td>
<td>male</td>
<td>2</td>
<td>212</td>
<td>1.4</td>
<td>8–10 boy/8–11 girl</td>
</tr>
<tr>
<td>3.1</td>
<td>right</td>
<td>Galerie Préhistorique</td>
<td>>50</td>
<td>matures/senilis</td>
<td>male</td>
<td>6</td>
<td>225</td>
<td>1.5</td>
<td>9–12 boy/girl</td>
</tr>
<tr>
<td>3.2</td>
<td>right</td>
<td>Galerie de l'Ours</td>
<td>30</td>
<td>adultus</td>
<td>female</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3.3</td>
<td>right</td>
<td>Galerie de l'Ours</td>
<td>11</td>
<td>adultus</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

The first subject (n°1) is a man of about 34–35 years old (adultus) who left a single right footprint at the eastern edge of the area. The movement points in a west-northerly direction. It has been recognized already by Lemozi (1929) and Duday and García (1983) without further descriptions.

In contrast subject n°2, a 25 year old young woman (adultus), is represented by two left footprints leading in a north-westerly direction. They are preserved at the eastern and northern part of the clayish area. Between the two left footprints the right one is missing due to the hard surface in this place. Ciqae, Kxunta and Thao interpret a slow pace which is proved by the short step size of around 42 cm (when reconstructing the missing right footprint in the middle of the two left footprints). While the footprint at the eastern edge (footprint n°2.1) was already documented and studied by Lemozi (1929) and Duday and García (1983), the corresponding second one (footprint n°2.2) in the northern part of the area has only now been discovered by Ciqae, Kxunta and Thao.

Based on the maximum length (Lmax = 199 mm) of the hitherto known footprint from subject n°2, Duday and García (1983; footprint n°4) reconstruct a body size of 1326 m. For them this footprint does not reflect the bio-mechanical schema of normal walking. “Le basculement du pied et la faiblesse de la phase propulsive trouvent leur explication la plus plausible dans le contexte – sans douleurs – de la portion antéromérale de la voûte sur cet objet dur qui semble être un caillou ou un fragment de concrétion (?)” (Duday and García, 1983, p. 212).

Subject n°3 has left three footprints (right–left–right) in the eastern and central part of the preserved area. According to Ciqae, Kxunta and Thao they belong to a 9–10 years old boy (infans II) who was walking first in a westerly direction, turning later towards the west-north and accelerating the pace. The increasing step distance from 27 cm to 42 cm suggests this interpretation. The first footprint (footprint n°3.1) of this little series was already analysed by Lemozi (1929) and Duday and García (1983). Both saw it pointing towards the east. While the second footprint (footprint n°3.2) was only documented without further comments by Duday and García (1983), the third one (footprint n°3.3) was discovered by Ciqae, Kxunta and Thao in 2013.

Based on the maximum length (Lmax = 212 mm) of the first right footprint from subject n°3 Duday and García (1983; footprint n°2) reconstruct a body size of 1413 m. Duday and García described the footprint as follows: “L’ensemble de la voûte est parfaitement marqué; la portion médio-plantaire s’inscrit même en double contour, témoins manifeste de la cambrure du pied. L’appui des orteils est par contre à peine perceptible: la première phalange de l’hallux s’est plus profondément imprimée que la pulpe. L’appui antérieur semble donc n’avoir été qu’esquissé.” (Duday and García, 1983, p. 212).

A man (subject n°4) with an age older than 50 years (maturus/senilis) crossed the area in a westerly direction. He left two foot-
(1929) and Duday and García (1983), the corresponding right one
(footprint n°4.2) was discovered by Ciqae, Kxunta and Thao.

Based on the maximum length ($L_{\text{max}} = 225 \text{ mm}$) of the left
footprint from subject n°4, Duday and García (1983; footprint n°6)
reconstruct a body size of 1.50 m. For Duday and García this foot-
print “est certainement la plus harmonieuse. Tous les reliefs plan-
taires y sont inscrits, et les bourrelets d’argile qui la cernent
211–212).

Subject n°5 has left certainly the most often cited prehistoric
footprint. According to Ciqae, Kxunta and Thao it represents a 30
year old women (adultus) who has left two footprints (right–left)
while walking in a fast pace over this area (step width around
83 cm). They are located in the central part, and her walking di-
rection was east. Due to the relatively deep imprint, the trackers
deduce that the woman was carrying additional load. The left
footprint (footprint n°5.2) is the most visible one, it has been
analysed by Lemozi (1929) and Duday and García (1983). The cor-
responding right one (footprint n°5.1) was hitherto unknown. It
was discovered again by Ciqae, Kxunta and Thao in 2013.

Based on the maximum length ($L_{\text{max}} = 239 \text{ mm}$) of the left
footprint from subject n°5 Duday and García (1983; footprint n°11)
reconstruct a body size of 1593 m. Duday and García summarize
that the foot “s’est enfoncé dans l’argile fluide qui a fusé tout autour,
s’insinuant même entre les deux premiers orteils. [...] La
prédominance du premier rayon dans la phase terminale de l’appui
se trouve donc exagérée, et il est clair qu’il s’agit là d’une empreinte
dynamique, très évocatrice d’un élan propulsé accentué, (pied
d’appel d’un saut ?).” (Duday and García, 1983, p. 213).

In summary, Ciqae, Kxunta and Thao see in these footprints five
individuals, ranging from age group (following Martin, 1928) infans
II over adultus to maturus/senilis (see Table 2). Two men, two
women and one boy crossed this area at a normal and fast pace.
While the young boy (n°3) changed his direction of movement to
the left, the 30 year old woman (subject n°5) was carrying an additional load. The footprints are concentrated in the eastern part of the preserved area; this is certainly due to the softness of the soil. Apart from subject n°5 all other movement directions are facing towards the west; subject n°5 was walking in an easterly direction.

The footprints are located in a shallow depression of the rocky surface in the ‘Galerie des Disques’, in which some mud accumulated. When approaching this area today from the actual artificial entrance and coming from the ‘Salle Préhistorique’, one has some space to move but after the muddy area the path narrows into an ascending balcony that has to be negotiated with prudence in order to avoid dropping down. The path to which the area with footprints belongs connects the ‘Salle Préhistorique’ with the back part of the ‘Galerie de l’Ours’. Coming from this back part of the ‘Galerie de l’Ours’, the ‘Galerie des Disques’ presents its extension on a lower level. The immediate prolongation of the natural path follows the wall on a sort of balcony and leads directly to the ‘Salle Préhistorique’. To reach the other parts of the ‘Galerie des Disques’, climbing was necessary. The area of footprints is so far in a crucial part of the ‘Salle Préhistorique’. To face the other parts of the ‘Galerie des Disques’, climbing was necessary. The area of footprints is so far in a crucial part of the ‘Salle Préhistorique’. To face the other parts of the ‘Galerie des Disques’, climbing was necessary. The area of footprints is so far in a crucial part of the ‘Salle Préhistorique’.

To conclude: the footprints of four subjects are faced towards the ‘Salle Préhistorique’, the footprints of only one subject are oriented in the opposite direction to the ‘Galerie de l’Ours’. Subject n°3, the 9–10 years old boy, changed the walking direction 45° to the left and accelerated the pace simultaneously. Due to this action, the young boy steers clear of the nearby profound abyss towards the safe cave wall.

5. Discussion

The non-destructive imaging technology used for a complete state-of-the-art documentation of the entire area containing human footprints in Pech-Merle improves our understanding of the entire configuration. For the first time a complete view of all footprints discovered during the last 90 years is available, and this view includes the immediate surroundings. With new image-processing technology the drawings at scale made by Lemozi (1929) and later Duday and García (1983) are brought together in a single document, along with the recent discoveries of Ciqae, Kxunta and Thao. It becomes obvious that new discoveries are concentrated in the western part of the area and it remains unclear why they were overlooked or ignored by the preceding researchers. Once pointed out by Ciqae, Kxunta and Thao, they were distinctly visible.

The interpretations of the trackers go far beyond the published ones: both Lemozi and Vallois saw two individuals only (Lemozi, 1929; Vallois, 1931). While Lemozi assumes a woman walking with an adolescent (her child), Vallois hypothesizes about an adult and a child without further precise base.

A closer look at the analysis of Duday and García (1983) reveals some progress compared to their predecessors since they provide details of singular footprints, but on the other hand they subsume all footprints as the result of one single person’s activity. “Leurs différences portent essentiellement sur des dimensions longitudinales; mais nous avons montré qu’elles sont davantage dues à des incidents de la marche qu’à de véritables variations morphologiques. En définitive, nous pensons que toutes ces empreintes peuvent être rapportées à un seul et mème individu.” (Duday and García, 1983, p. 214) Based on the well-formed footprint n°6 in their recording (footprint n°41), they reconstruct a shoe size (‘pointure parisienne’) of 33.5–34 and conclude. “Ces traces peuvent donc être attribuées à un grand enfant, un adolescent ou même, à l’extrême rigueur, à un adulte au pied particulièrement gracile.” (Duday and García, 1983, p. 214) This cautious interpretation contradicts partly the one given by Ciqae, Kxunta and Thao, who counted one infants II (subject n°3), three adults (subjects n°1, n°2 and n°5) and one maturus/senilis (subject n°4).

In the recently published analysis of the hominids footprints from Happisburgh (Ashton et al., 2014), the authors used for age determination the study conducted by Anderson et al. (1956). They analysed the foot length of 512 male and female subjects of an age between 1 and 18 years, which have been measured for 5–12 consecutive years (Anderson et al., 1956). According to Anderson et al. (1956) and based on the measurements from Duday and García (1983) the footprints from Pech-Merle belong to a 7–9 year old boy or girl (subject n°2, footprint n°4), a 8–10 years old boy or a 8–11 years old girl (subject n°3, footprint n°2), a 9–12 years old boy or girl (subject n°4, footprint n°6), and a 11–14 years old boy or 11–18 years old girl (subject n°5, footprint n°11) (Table 2). Despite the possibility to interpret the variety of their data in such a disparity, Duday and Garcia attributed all footprints to one single person. It becomes obvious that age estimation based on measurements only is limited, because foot growth ends with an age of around 16 years (see Anderson et al., 1956). Therefore the extending investigations on other features which are preserved in footprints – as was realised by Ciqae, Kxunta and Thao – is more successful than the limited interpretation made possible by morpho-metric data.

The observation that most of the hand negatives, finger drawings and fingerprints in Pech-Merle belong to adults is interesting, but it is impossible to link both phenomena with actual scientific methods, postulating that hand negatives and footprints belong to the same persons. Singular exceptions prove also the presence of younger subjects: these include finger drawings at the edge of the panel C of the ‘Plafond’, one little red hand negative near the ‘Femmes-bisons’, and the flexed finger negatives on the panel of the spotted horses (Lorblanchet, 2010, p. 177). The latter two representations are interpreted by Lorblanchet as female fingers.

Please cite this article in press as: Pastoors, A., et al., Experience based reading of Pleistocene human footprints in Pech-Merle, Quaternary International (2016), http://dx.doi.org/10.1016/j.quaint.2016.02.056
Finally the interpretations of Ciqae, Kxunta and Thao support the rejection of the first published reading by Lemozi, who was certainly influenced by the general interpretation of cave art as embedded in ceremonial activities: “Cet ensemble d’éléments fait penser à une femme, artiste ou prêtreesse, venue là peut-être pour quelque cérémonie et accompagnée de son enfant. Celui-ci, peut-être un jeune initié, tournait timidement autour d’elle dans tous les sens, sans s’écarter de plus de cinquante centimètres.” (Lemozi, 1929, p. 154)

In view of the fact that the area with the footprints is but a random excerpt of one of the natural travel routes inside the cave, the readings of Ciqae, Kxunta and Thao would seem to be most ‘down to earth’. Not only do they see people walking along in a pace adapted to the surroundings — including a young boy who seemingly preferred the safer nearness to the cave wall when stepping onto the slanting balcony — but they also see that these people just passed by once. This stands in contrast to Duday and Garcia — notwithstanding that they refrain from insinuating any ritual activity — according to whom a single person would have had to either step to and from on this spot in an erratic manner, or the person would have had to return more than once to this spot from one side.

6. Conclusions

It turns out that Pech-Merle is an ideal case study to plot morpho-metric and morpho-classificatory approaches against each other in order to discuss and to synthesize the obtained results. It can thus be demonstrated that both approaches make use of comparable features like foot length, ball-of-foot breadth and footprint angle (Mauch et al., 2008b), or Clark angle, ball width, heel width and instep width (Bennett and Morse, 2014, p. 33, Fig. 2.12). The pivotal difference between morpho-metric and morpho-classificatory approaches is the chaîne opératoire. Whereas morpho-metric analysis uses for all determinations every single footprint as a closed set of data, morpho-classificatory analyses summarize morphological information on every single footprint together with its contextual associations. The morpho-classificatory approach integrates all available information mirroring human behaviour. Related footprints are ascribed to a particular subject, which only thus reveal details of behaviour like the gait, step width and pace of movement as important additional information to age and sex determination. The reading process starts with the identification of subjects, which subsequently are studied in detail. Unclear footprints are recognized but not included in the final interpretation. Taking all readable footprints into account and integrating them into a holistic picture enables the trackers to summarize the story of the area of footprints.

In view of this wealth of information the restricted data of morpho-metric analyses allow only a reduced depth of interpretation and does not fully exploit the information potential of the human footprints. Taking into account only the maximum length of a footprint, as was done in Pech-Merle in the works of Lemozi, Vallois, Duday and Garcia in their exemplary application of the morpho-metric method, inevitably results in an interpretation that cannot go beyond a certain basic level of an extrapolated stature and a rough age determination. For Duday and García (1983) the morpho-metric analysis results in subsuming all footprints into the product of one single human’s activity. A problematic muddy substrate and fragmented preservation introduce further fuzziness. At other sites with Pleistocene footprints, like Happisburgh, Niaux and Tuc d’Aoudourt, research is conducted in a comparable way, i.e. it is founded on the measurement techniques available (Vallois, 1928, 1931; Pales, 1976; Ashton et al., 2014).

The morpho-metric approach should use the results of the morpho-classificatory approach to sharpen its method, thus broadening the catalogues of features to be included in data capturing. The reading of footprints results from the shared knowledge of the observers and cannot completely be captured by metric analysis. Therefore and for the time being, the morpho-classificatory approach is able to produce a broader spectrum of information about human behaviour based on footprints than the morpho-metric method.

This problem was already mentioned by Martin (1928) in his general description of anthropological research. According to him measurements were taken to highlight fine differences, which neither human eye can detect nor our language is able to describe. As the derived statistics is important for anthropological research, it is not advisable “blindlings darauflos zu messen, eine Unsumme von Messungen auszuführen und ebenso viele Zahlenwerte anzu-sammeln, die nicht imstande sind, morphologische Vorstellungen zu vermitteln. […] Eines Maß hat einer bestimmten Fragestellung zu genügen und muß für sich allein oder in Beziehung zu anderen Maßen ein wichtiges körperliches Merkmal oder Verhältnis möglichst genau zum Ausdruck bringen. […] to keep on measuring blindly, execute an abundance of measurements and accumulate an equal number of figures that are incapable of inviting a morpho-logical notion. [...] Every measurement has to comply with a specific question and by itself or in relation to other measurements it has to express a significant bodily feature or proportion.” (Translation by TLE) (Martin, 1928, pp. 62–63).

Bibliographic research regarding the years 2009–2013 counts 2083 articles published in four highly cited journals worldwide (Journal of Foot and Ankle Research, Foot & Ankle International, Journal of Foot & Ankle Surgery and Foot and Ankle Clinics) (Luo et al., 2015) and evinces a wide field of research around foot anatomy and morphology. They cover a wide spectrum of different topics relevant for shoe production, medicinal and forensic research: age estimation (Hackman et al., 2013), sexual dimorphism and sex determination (Fessler et al., 2005; Atamturk, 2010; Krauss et al., 2011a, 2011b; Kautiya et al., 2013; Kanchan et al., 2014; Keme Ebimbo et al., 2014; Rahman et al., 2014), body size estimation (Mohanty et al., 2012), and uniqueness (see Bennett and Morse, 2014, pp. 180ff) as well as anthropological basics (growth of foot) (Davenport, 1932; Meredith, 1944; Anderson et al., 1956; Mauch et al., 2008a). The cited studies evince the variability of interpretations and reflect the high informational potential of human feet and footprints. Consensus exists about sexual dimorphism at the arch, the lateral side of the foot, the first toe and the ball of the foot. Males have longer and broader feet than females for a given stature (Wunderlich and Cavanagh, 2001), while females tend to have a narrower heel in relation to the forefoot and have narrower feet than males in general relative to length (Frey, 2000). These facts in turn underline the validity and relevance of the interpretation made by Ciqae, Kxunta and Thao in their morpho-classificatory approach which addresses exactly these relations and measures in a footprint.

The study of human footprints in Pech-Merle cave presented here has to be seen as a further step towards the understanding of differences and overlaps of morpho-metric and morpho-classificatory approaches. Both imply unique analytical means which, if combined, may enrich the reading of human footprints. Future research should focus on sharpening morpho-metric approaches as well as determining the epistemological procedure of the morpho-classificatory tracking approach.

Acknowledgements

Research into the footprints of Pech-Merle was enabled by funding of the Deutsche Forschungsgemeinschaft. The staff of Pech-
Merle is to be commended for the support lends to the research team. 3D-scanning of the footprints was made possible by the generous Dr Bernd Breuckmann Award. For 3D-model visualisation ArtefactViewer developed by Daniel Wickeroth from University of Cologne was used. We also would like to thank for the support of the Collaborative Research Center (CRC) 806 “Our Way to Europe” hosted at the Universities of Cologne, Bonn and Aachen. Finally the authors are indebted to Megan Biesele for her valuable support during field research, her comments on earlier versions of this paper and for correcting the English language in this manuscript.

References

Please cite this article in press as: Pastoors, A., et al., Experience based reading of Pleistocene human footprints in Pech-Merle, Quaternary International (2016), http://dx.doi.org/10.1016/j.quaint.2016.02.056